
Measures of entanglement based on decoherence

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys. A: Math. Gen. 34 8501

(http://iopscience.iop.org/0305-4470/34/41/308)

Download details:

IP Address: 171.66.16.98

The article was downloaded on 02/06/2010 at 09:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/34/41
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 8501–8516 PII: S0305-4470(01)26321-5

Measures of entanglement based on decoherence
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Abstract
New measures of entanglement—the time of disentanglement and the rate of
decoherence—of states of a compound system are proposed. They are based
on the dynamical properties of the system induced by the measurement-like
interaction with an environment. In particular, it is shown that in the case of
two qubits the time of disentanglement may serve as a practical measure of
entanglement of mixed states.

PACS numbers: 03.65.Ud, 03.65.Yz, 03.67.-a

1. Introduction

Entanglement of quantum states is the most non-classical feature of quantum systems. It shows
up when the system consists of two or more subsystems and the total state cannot be written
as a product state. Mathematically there is nothing very special about this but the physical
consequences are extraordinary. Indeed, an entangled state cannot be thought of as a state of a
composite system in any classical sense. Entanglement has such remarkable consequences
that Schrödinger was led to say that it was ‘not one but rather the characteristic trait of
quantum mechanics’ [1]. Entangled states play a central role in quantum communication [2],
cryptography [3] and quantum computing [4], so it is important to know what amount of
entanglement a given quantum state contains. For any bipartite system in a pure state ψ it was
argued in [5] that the entropy of entanglement

E(ψ) = −trρ̂ log2 ρ̂

where ρ̂ is a partial trace of |ψ〉〈ψ | over either one of the two subsystems, is a reasonable
measure of entanglement, and it was shown in [6] that E(ψ) is essentially a unique measure
of entanglement for pure states. For mixed state ρ, it seems that the basic measure is the
entanglement of formation [7]

E(ρ) = min
∑
i

piE(ψi)

where the minimum is taken over all possible decompositions

ρ =
∑
i

pi |ψi〉〈ψi |.
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Since E(ρ) involves a minimalization procedure, in general it cannot be easily computed
analytically or even numerically. Fortunately, in the case of two qubits, an explicit formula for
E(ρ) exists [8,9], andE(ρ) is a function of another useful quantity called concurrence, which
also can be taken as a measure of entanglement. Another class of measures was introduced
in [10, 11]. They are defined as follows: let D be the set of all separable states, then

E(ρ) = min
σ∈D

D(ρ‖σ)

whereD is any measure of distance between two density matrices. For appropriate distanceD,
the measureE(ρ) can be shown to satisfy the following natural conditions: (i)E(ρ) = 0 iff ρ is
separable; (ii) local unitary operations leaveE(ρ) invariant and (iii)E(ρ) cannot increase under
transformations involving local general measurements and classical communication [11].

In this paper, we propose measures of entanglement based on dynamical properties of
a compound system, induced by measurement-like interaction with an environment. The
evolution of density matrices of a compound system is given, in the Markovian approximation,
by an ergodic dynamical semi-group {Tt }, i.e. a trace preserving semi-group of operators
completely positive and contractive in the trace norm having the completely mixed state 1

n
I

invariant. Such a type of evolution is a particular realization of so-called strictly contractive
quantum channels [12]. The interaction between the system and its environment described by
{Tt } makes all states unstable, and for a bipartite system the class of the most unstable states
coincides with the class of maximally entangled states [13]. Moreover, the degree of stability
may serve as another measure of entanglement of pure states. In this paper we discuss the
evolution of an arbitrary two-qubit density matrix ρ. We shall show that if ρ is separable, then
for any t � 0, ρt = Tt (ρ) is also separable, but when ρ is entangled (i.e. partial transposition
ρTA is not positive definite [14]), there is a definite time of disentanglement td(ρ) after which
ρt becomes separable. We provide a formula for td(ρ) in the case of an arbitrary two-qubit
density matrix and compute this quantity for several examples. Comparison of td(ρ) with
measures of entanglement, and its general properties listed in theorem 1, suggest that td(ρ)
may be considered as a kind of new measure of entanglement, with intuitive physical origin
and a simple algorithm for analytic and numerical calculation. Moreover, it is shown that
for a class of so-called T -states td(ρ) is an increasing function of the concurrence and so it is
equivalent to the entanglement of formation. It is worth noting that the time of disentanglement
may be also defined in the case of n-dimensional systems coupled together. In the paper we
also discuss the stability properties of three- and four-qubit states. It turns out that it is useful
to introduce the rate of stability of pure states expressed in terms of the pair (λ(P ), λmin(P ))

consisting of the rate of decoherence λ(P ) and minimal rate of decoherence λmin(P ). It is
shown that in both three- and four-qubit cases the most entangled states are the most unstable.

2. Two-qubit states

Suppose A,B are spin- 1
2 systems, i.e. they are represented by a 2 × 2 matrix algebra. The

algebra of the joint system AB is equal to M4×4. We assume that the system AB is open and
interacting with its environment, so the reduced dynamics of the system AB is given, in the
Markovian approximation, by the master equation

ρ̇ = Lρ = −i[H, ρ] + LDρ (1)

where H = H ∗ ∈ M4×4, and LD denotes the dissipative part of the generator L of a semi-
group Tt . LD depends explicitly on the type of interaction between the system AB and the
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environment. In our model we assume that the environmental monitoring is of a measurement-
like type with respect to a family of non-commuting projectors, i.e.

LDρ = κ

(∫
dµ (x)PxρPx − ρ

)
(2)

where {Px} is a continuous family of projectors such that
∫

dµ (x)Px = I. It is worth noting
that formula (2) is a straightforward generalization of the expression

∑
i PiρPi − ρ to the

continuous case. In our model we take two families of projectors of the following type:
{PA ⊗ IB} and {IA ⊗ PB}, where PA and PB are one-dimensional projectors associated with
states of the system A and B, respectively. Therefore

LDρ = κ

(∫
S2

dµ (n) (PA(n)⊗ IB ) ρ (PA(n)⊗ IB )

+
∫
S2

dµ (n) (IA ⊗ PB(n)) ρ (IA ⊗ PB(n))− 2ρ

)
(3)

where PA(B)(n) is a one-dimensional projector in C
2 corresponding to the point n ∈ S2 ⊂ R

3,
and the measure dµ (n) on S2 is normalized in such a way that∫

S2
dµ (n)PA (B)(n) = IA (B).

If we put κ = 3/2, then we obtain [13]

LDρ = IA

2
⊗ trAρ + trBρ ⊗ IB

2
− 2ρ = TrAρ + TrBρ − 2ρ (4)

where trA (trB) : M4×4 → M2×2 denotes the partial trace with respect to system A (B)

respectively and TrA (TrB) is the conditional expectation from M4×4 onto a subalgebra of
M4×4 isomorphic to IA ⊗M2×2 (M2×2 ⊗ IB).

In our previous paper [13] we studied the stability of states with respect to such a kind of
interaction. We showed that the rate of decoherence of a pure state P , given by

λ(P ) = 1

2

d

dt
Slin(TtP )

∣∣
t=0 (5)

where Slin(ρ) = tr (ρ − ρ2), determines the set of maximally entangled states, as the most
unstable states for which λ(P ) = λmax. λ(P ) may also be taken as another measure of
entanglement for pure states and it provides some information about entanglement of mixed
states.

In this paper, we study the evolution of states of a compound system AB, given by the
semi-group Tt generated by L with H = 0. Then

Tt (ρ) = e−2t ρ + e−t (1 − e−t )
(

IA

2
⊗ trAρ + trBρ ⊗ IB

2

)
+ (1 − e−t )2 IAB

4
. (6)

This evolution has the following important property: if ρ is separable, then Tt (ρ) is also
separable for all t � 0. To show this, suppose that

ρ =
∑
i

αiPi ⊗Qi αi � 0 and
∑
i

αi = 1.

Then

Tt (ρ) = e−2t ρ + 2e−t (1 − e−t )
(

IA

4
⊗
∑
i

αiQi +
∑
i

αiPi ⊗ IB

4

)
+ (1 − e−t )2 IAB

4

and so Tt (ρ) is a convex combination of separable density matrices, and hence is separable.
This property follows also from the fact that our dynamics is local, and so it cannot entangle
two particles.
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Let now ρ be an arbitrary density matrix. We divide the set [0,∞) into two disjoint
subsets Aρ and Bρ such that Aρ ∪ Bρ = [0,∞):

Aρ = {t ∈ [0,∞) : Tt (ρ) is entangled}
Bρ = {t ∈ [0,∞) : Tt (ρ) is separable}.

Clearly, by the above property, for every t1 ∈ Aρ and every t2 ∈ Bρ we have t1 < t2. Moreover,
the setBρ is always non-empty since any ρ evolves to a completely mixed state 1

4 IAB and there
is a neighbourhood of this state which contains only separable states.

Definition. The time of disentanglement td(ρ) of a density matrix ρ is given by

td(ρ) = inf Bρ.

Since the set of separable states is compact, Bρ is closed and td(ρ) ∈ Bρ . Therefore td(ρ)may
be equivalently defined as the smallest time for which Tt (ρ) is separable. The next theorem
lists some properties of the time of disentanglement.

Theorem 1.

(1) td(ρ) � 0 and td(ρ) = 0 if and only if ρ is separable.
(2) Local unitary transformations leave td invariant, i.e. for any unitary matrices U1, U2 ∈

M2×2

td(U1 ⊗ U2 ρ U
∗
1 ⊗ U ∗

2 ) = td(ρ).

(3) td(ρ̃) � td(ρ) for ρ̃ being a convex combination of matrices of the form

Ui ⊗ Vi ρ U
∗
i ⊗ V ∗

i

where Ui, Vi are unitary 2 × 2 matrices.
(4) Suppose Ai, Bj ∈ M2×2 are such that∑

i

A∗
i Ai =

∑
i

AiA
∗
i = IA∑

j

B∗
j Bj =

∑
j

BjB
∗
j = IB.

Then

td

(∑
ij

Ai ⊗ Bj ρ A
∗
i ⊗ B∗

j

)
� td(ρ).

In other words, td does not increase under local general measurements.

Proof.

(1) This follows directly from the definition.
(2) Since

Tt (U1 ⊗ U2 ρ U
∗
1 ⊗ U ∗

2 ) = U1 ⊗ U2 Tt (ρ) U
∗
1 ⊗ U ∗

2

Tt (U1 ⊗ U2 ρ U
∗
1 ⊗ U ∗

2 ) is separable if and only if Tt (ρ) is separable.
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(3) Suppose that

ρ̃ =
∑
i

αiUi ⊗ Vi ρ U
∗
i ⊗ V ∗

i

where
∑

i αi = 1, or more generally,

ρ̃ =
∫

dµ (U ⊗ V )U ⊗ V ρ U ∗ ⊗ V ∗

where dµ is a probability measure on U(2)⊗ U(2). Then

Tt (ρ̃) =
∫

dµ (U ⊗ V )U ⊗ V Tt(ρ) U
∗ ⊗ V ∗

and so Tt (ρ̃) is separable if Tt (ρ) is separable.
(4) Let

ρ̃ =
∑
ij

Ai ⊗ Bj ρ A
∗
i ⊗ B∗

j .

Suppose Tt (ρ) is separable. Then [16, 17]

IA ⊗ trATt (ρ)− Tt (ρ) � 0. (7)

Because condition (7) is also sufficient for a density matrix to be separable and

IA ⊗ trATt (ρ̃)− Tt (ρ̃) =
∑
ij

Ai ⊗ Bj [IA ⊗ trATt (ρ)− Tt (ρ)]A
∗
i ⊗ B∗

j � 0

Tt (ρ̃) is separable too. Hence td(ρ̃) � td(ρ).

�
Using (7) we are now in position to derive a formula for the time td. We look for the smallest
value of time t such that for any v ∈ C

4, ‖v‖ = 1

〈 v, [2TrATt (ρ)− Tt (ρ)] v 〉 � 0.

If we substitute x = et the above inequality may be written as
1
4x

2 + x〈 v, (TrAρ − TrBρ)v 〉 + 〈 v, (ρ − TrAρ − TrBρ + TrABρ)v 〉 � 0. (8)

Let us denote

"(v) = 〈 v, (TrAρ − TrBρ)v 〉2 + 〈 v, (ρ − TrAρ − TrBρ + TrABρ)v 〉.
Because td(ρ) is equal to the logarithm of the greater root of the lhs of inequality (8),

td(ρ) = max
(

0, ln
[
2 sup

‖v‖=1

(
〈 v, (TrBρ − TrAρ)v 〉 +

√
"(v)

)])
(9)

where the supremum is taken over all normalized vectors v such that "(v) > 0. In the
particular case of states ρ for which trAρ = trBρ = 1

2 I (so-called T -states [15]), formula (9)
simplifies to

td(ρ) = max (0, 1
2 ln(4pmax(ρ)− 1)) (10)

where pmax(ρ) is the maximal eigenvalue of ρ. On the other hand, the class of T -states
coincides with the class of density matrices which are real when expressed in the ‘magic
basis’ [8]

f1 = 1√
2
(|11〉 + |00〉) f2 = i√

2
(|11〉 − |00〉)

f3 = i√
2
(|10〉 + |01〉) f4 = 1√

2
(|10〉 − |01〉)
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i.e. satisfying

ρ = ρ† = (σy ⊗ σy) ρ (σy ⊗ σy)

where ρ denotes complex conjugation of the matrix ρ. Since the concurrence C(ρ) is given
by [8]

C(ρ) = max
(

0, 2pmax(ρ̂)− tr ρ̂
)

where

ρ̂ = (ρ1/2 ρ† ρ1/2)1/2

for the class of T -states we obtain

C(ρ) = max ( 0, 2pmax(ρ)− 1) .

Thus the following relation holds.

Proposition 1. For a class of T -states, i.e. density matrices ρ satisfying trAρ = trBρ = 1
2 I,

the time of disentanglement td(ρ) is given by the following function of concurrence C(ρ):

td(ρ) = 1
2 ln(2C(ρ) + 1). (11)

Although it is usually much simpler to calculate td(ρ) than the infimum of some distance
D(ρ‖σ) over the space of all separable density matrices σ , formula (9) is not very practical.
In a particular case with a fixed ρ the following algorithm proved to be useful:

• calculate Tt (ρ);
• take the partial transposition Tt (ρ)TA with respect to subsystem A;
• solve the equation det Tt (ρ)TA = 0 (after substitution x = e−2t this equation is converted

to an algebraic one of the fourth degree) and
• if there are roots xi ∈ (0, 1] pick up the smallest one, say x1, and put td(ρ) = − 1

2 ln x1.

Otherwise take td(ρ) = 0.
Let us now calculate the time of disentanglement for some families of density matrices.

Example 1. Pure states. Let

ψ =




R1

R2eiθ2

R3eiθ3

R4eiθ4


 R1, R2, R3, R4 � 0 R2

1 + R2
2 + R2

3 + R2
4 = 1 θ2, θ3, θ4 ∈ [0, 2π ]

be an arbitrary pure state of a two-qubit system. By direct calculation we obtain that

td(|ψ〉〈ψ |) = 1
2 ln

[
1 + 4

√
R2

1R
2
4 + R2

2R
2
3 − 2R1R2R3R4 cos(θ2 + θ3 − θ4)

]
. (12)

In particular, the maximal value of td(|ψ〉〈ψ |) = 1
2 ln 3 is attained for a three-parameter family

of maximally entangled states. Let us now compare td with another measure of entanglement
for pure states. It turns out that td and entropy EA = −tr (trA|ψ〉〈ψ |) log(trA|ψ〉〈ψ |) as well
as the rate of decoherence λ(|ψ〉〈ψ |) [13] depend only on one parameter

α = R2
1R

2
4 + R2

2R
2
3 − 2R1R2R3R4 cos(θ2 + θ3 − θ4)

and so

td = 1
2 ln[1 + 4

√
α]

EA = −1

2

[(
1 − √

1 − 4α
)

ln
1 − √

1 − 4α

2
+
(

1 +
√

1 − 4α
)

ln
1 +

√
1 − 4α

2

]

λ = 1 + 2α.
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Remark. By direct calculation we can check that the relation between td and the concurrence
given by formula (11) is also valid if ρ is an arbitrary pure state.
Below we plot functions td, EA and λ − 1. Clearly, all of them give the same order of
entanglement among pure states.

Example 2. Bell-diagonal states. Let

ρB = p1|*+〉〈*+| + p2|*−〉〈*−| + p3|++〉〈++| + p4|+−〉〈+−|
where

*± = 1√
2
(|00〉 ± |11〉) +± = 1√

2
(|10〉 ± |01〉).

It is known that if all pi ∈ [0, 1/2], ρB is separable, while for p1 > 1/2, ρB is entangled
(similarly for p2, p3, p4) [15]. Since ρB belong to the class of T -states,

td(ρB) = 1
2 ln(4p1 − 1) p1 > 1/2. (13)

Let us compare (13) with the measure of entangled E(ρB) computed in [18]

E(ρB) = p1 lnp1 + (1 − p1) ln(1 − p1) + ln 2. (14)

td as well as E is an increasing function of p1 and they attain their maximal value for p1 = 1
(see figure 2).

Example 3. Maximally entangled mixed states.
Recently, a class of mixed two-qubit states was discovered, which are conjectured to be
maximally entangled for a given degree of inpurity measured by trρ2 [19]. They form the
following family of states:

ρM =



g(γ ) 0 0 γ /2

0 1 − 2g(γ ) 0 0
0 0 0 0
γ /2 0 0 g(γ )


 g(γ ) =

{
1/3 γ ∈ [0, 2/3]

γ /2 γ ∈ [2/3, 1].

Also in this case we are able to compute the time of disentanglement, which is given by

td(ρM) =



1
2 ln

(
5
9 + 2

9

√
4 + 81γ 2

)
γ ∈ [0, 2/3]

1
2 ln

(
1 − 2γ + 2γ 2 + 2γ

√
2 − 2γ + γ 2

)
γ ∈ [2/3, 1].

(15)

A comparison with Werner states [20]

ρW = (1 − p)
I4

4
+ p|+〉〈+|

where + is a maximally entangled pure state, shows that for a fixed trρ2, td(ρM) > td(ρW) =
1
2 ln 3p (see figure 3). Moreover, computer simulations show that indeed td(ρM) is a maximal
possible value of td for fixed trρ2. Let us point out that maximally entangled mixed states with
γ ∈ (0, 1) provide an example of states for which td(ρ) < 1

2 ln(2C(ρ) + 1).
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Figure 1. td, EA and λ− 1 as functions of α.
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Figure 2. td and E as functions of p1 ∈ [1/2, 1].

3. Three- and four-qubit states

As we showed in the previous section, dynamical properties of a two-qubit system induced
by measurement-like interaction with an environment can be used to study entanglement. In
particular, the rate of decoherence classifies pure states with respect to their entanglement,
and the time of disentanglement provides a practical measure of entanglement for arbitrary
mixed states. Now we should like to extend these ideas and discuss entanglement of three- and
four-qubit states. Since for two-qubit pure states the rate of decoherence λ(P ) and concurrence
C(P ) are related by the equation

2λ(P )− 2 = C(P )2

and so yield equivalent measures of entanglement, we propose to take the rate of stability as a
measure of entanglement of pure states also in the case of three- and four-qubit systems.
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Figure 3. td as a function of trρ2 for ρM (dotted curve) and ρW.

3.1. Three qubits

Let A1, A2, A3 be 1
2 -spin systems. The algebra of observables A of the joint system A1A2A3

is given by

A = A1 ⊗ A2 ⊗ A3 Ai = M2×2

and is equal to the algebra of 8 × 8 complex matrices M8×8. We consider the stability of
pure states of the compound system with respect to the measurement-like interactions given
by families of projectors

{PA1 ⊗ IA2 ⊗ IA3}, {IA1 ⊗ PA2 ⊗ IA3}, {IA1 ⊗ IA2 ⊗ PA3}
where PAi

are one-dimensional projectors associated with pure states of the system Ai .
Generalizing the construction of the generator L given in the previous section (again we
omit the coupling constant κ , which measures the strength of interaction between the system
and its environment), we obtain

Lρ = −i[H, ρ] +
3∑

k=1

TrAk
ρ − 3ρ (16)

where TrAi
, i = 1, 2, 3 is the conditional expectation from M8×8 onto a subalgebra of M8×8

isomorphic to IAi
⊗M4×4 given by

TrAi
(ρ) = 1

2 IAi
⊗ trAi

(ρ) i = 1, 2, 3 (17)

and trAi
is a partial trace with respect to subsystem Ai . Now the rate of decoherence λ(P )

defined by the obvious generalization of the formula (5) is given by

λ(P ) = 3 − 1
2

3∑
i=1

tr(trAi
P )2. (18)

It is useful to write λ(P ) = ∑3
i=1 λi(P ), where

λi(P ) = 1 − 1
2 tr(trAi

(P ))2. (19)

We introduce also the minimal rate of decoherence with respect to particular subsystems of
A1A2A3:

λmin(P ) = min1�i�3 λi(P ). (20)
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In the following we show that the rate of stability of pure states expressed in terms of λ and
λmin may serve as another measure of entanglement. More precisely, we shall say that state P
is less stable than Q if λ(P ) � λ(Q) and λmin(P ) � λmin(Q).

Theorem 2. The possible values of the two-dimensional set (λ(P ), λmin(P )) are points of the
triangle ABC shown in figure 4 with

A = ( 3
2 ,

1
2 ) B = ( 9

4 ,
3
4 ) C = (2, 1

2 ).

Proof. The interval AB is represented by the equation y = 3x. Hence

λ(P ) =
3∑
i=1

λi(P ) � 3λmin(P ).

It is also clear that

λmin(P ) � 1
2

or, equivalently, that for all i = 1, 2, 3 tr(trAi
)2 � 1. Therefore, it is enough to check only that

λmin(P ) � λ(P )− 3
2

since the line CB is given by the equation y = x − 3
2 . It is equivalent to

λ(P ) = λ1(P ) + λ2(P ) + λ3(P ) � λmin(P ) + 3
2 .

Suppose that λmin(P ) = λ1(P ). Because for every i = 1, 2, 3

tr(trAi
P )2 = tr(trAjAk

P )2

where jk are complementary to the index i, and trAjAk
P is an arbitrary density matrix, so

1
2 � tr(trAi

P )2 � 1.

Hence
1
2 � λi(P ) � 3

4

for any index i, and so

λ2(P ) + λ3(P ) � 3
2 .

�
Point A in figure 4 represents triseparable states P = P1 ⊗ P2 ⊗ P3, the interval AC
two-separable states, i.e. states of the form Pi ⊗ Pjk . Clearly, triseparable states are the
most stable ones. Points above the line AC correspond to entangled states and the point
B represents the most unstable states. They are determined by the property that for all
i = 1, 2, 3, tr(trAi

P )2 = 1
2 , which implies that

trAiAj
P = 1

2 I

for any i �= j . It is well known that these states coincide (up to local unitary isomorphisms)
with the GHZ state |C3〉 (GHZ class), where |Cn〉 = 1√

2
(|000 · · · 0〉 + |111 · · · 1〉), and so are

maximally entangled. It is also known that the GHZ class forms a five-parameter family of
states [21] and we have found an explicit realization of this family

Φ(θ1, θ2, θ3, ϕ, ψ) =




sin ϕ sinψeiθ1

sin ϕ cosψeiθ2

cosϕ sinψeiθ3

cosϕ cosψei(θ2+θ3−θ1)

cosϕ cosψe−i(θ2+θ3−θ1)

− cosϕ sinψe−iθ3

− sin ϕ cosψe−iθ2

sin ϕ sinψe−iθ1




θ1, θ2, θ3 ∈ [0, 2π ] ϕ, ψ ∈
[
0,
π

2

]
.

(21)
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Figure 4. Range of the function P → (λ(P ), λmin(P )).

3.2. Four qubits

Now we take four copies of spin- 1
2 -systems, say A1, A2, A3, A4. For the states of the joint

system A1A2A3A4 with the algebra of observables

A = A1 ⊗ A2 ⊗ A3 ⊗ A4

we consider the reduced dynamics generated by L with a dissipative part LD given by
measurement-like interactions with respect to families of projectors

{PAiAj
⊗ IAk

⊗ IAl
}

where i < j and (k, l) are complementary to (i, j) in the set {1, 2, 3, 4}. A similar construction
as above gives the following generator L:

Lρ = −i[H, ρ] +
∑
i<j

TrAiAj
ρ − 6ρ (22)

and the rate of decoherence λ(P ) for any one-dimensional projector P ∈ M16×16 is now given
by

λ(P ) = 6 −
∑
i<j

tr(TrAiAj
P )2. (23)

Because TrAiAj
P = 1

4 I4 ⊗ trAiAj
P ,

λ(P ) = 6 − 1
4

∑
i<j

tr(trAiAj
P )2. (24)

Since tr(trAiAj
P )2 = tr(trAkAl

P )2 where (kl) are complementary to (ij) in the set {1, 2, 3, 4},
formula (23) may be further simplified to

λ(P ) = 6 − 1
2

4∑
j=2

tr(trA1Aj
P )2. (25)

As in the three-qubit case we define the rate of decoherence with respect to a subsystem AiAj

by

λij (P ) = 1 − 1
4 tr(trAiAj

P )2 (26)
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Figure 5. Range of a function P → (λ(P ), λmin(P )).

and the minimal rate with respect to any pair of subsystems

λmin(P ) = min i<j λij = min 2�j�4 λ1j . (27)

Theorem 3. The range of the function P → (λ(P ), λmin(P )) coincides with the set shown in
figure 5 with A = ( 9

2 ,
3
4 ), B = ( 11

2 ,
11
12 ), C = ( 11

2 ,
7
8 ), D = ( 21

4 ,
3
4 ).

Proof. See the appendix. �
Let us now describe states which correspond to the boundary points in figure 5. Point A

represents four-separable states of the form P1 ⊗ P2 ⊗ P3 ⊗ P4. States of the form Pij ⊗ Pkl
for some indices (ij) and complementary to them (kl) are represented in the interval AD.
To point D corresponds states such that both Pij and Pkl are maximally entangled as states
in Ai ⊗ Aj (Ak ⊗ Al) respectively. The GHZ state |C4〉 is represented by point ( 21

4 ,
7
8 )

indicated by a dot on figure 5. Since there are states P such that both λ(P ) � λ(|C4〉〈C4|) and
λmin(P ) � λmin(|C4〉〈C4|) so it is not the most unstable state. It is also known to be not the
most entangled state. A state [22]

Ψ = 1√
6

(
|0011〉 + |1100〉 +

i
√

3 − 1

2
(|1010〉 + |0101〉)− i

√
3 + 1

2
(|1001〉 + |0110〉)

)

(28)

is represented by point B. Taking as a measure of entanglement the entropy

E = E12 + E13 + E14

where

Eij = − tr (trAiAj
P log2 trAiAj

P )

we obtain that

E(|Ψ 〉〈Ψ |) = 3 + 3
2 log2 3.

It was argued in [22] that this is the maximal possible value of the entropy E. Hence, since
all λij are invariant with respect to the local unitary transformations, we may conclude that
maximally entangled states are also maximally unstable. It is worth noting that the above
diagrams are specific to the type of evolution considered here. In general, for the dynamics
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given by a quantum dynamical (Markov) semi-group, there are present so-called decoherence
free subspaces also referred to as noiseless quantum codes (see for example [23] and references
therein). In such a case there exist states with the decoherence rate equal to zero and so with an
infinite time of disentanglement. However, since even a unitary dynamics, for which all states
are immune to decoherence, may transform entangled to separable (and vice versa) states, such
a general framework of quantum dynamical semi-groups cannot be effectively used to measure
the degree of entanglement of all states.
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Appendix

Proof of theorem 3. We have to prove five bounds on possible values of (λ(P ), λmin(P )).
First we show that λ(P ) � 9

2 . This is clear because for any j ∈ {2, 3, 4}, tr(trA1Aj
P )2 � 1.

The lower bound on λmin(P ), that is λmin(P ) � 3
4 , follows from the same argument. Because

λ(P ) = ∑
i<j λij (P ) and the interval AB is given by equation y = 1

6x, the obvious inequality
λ(P ) � 6 λmin(P ) gives the appropriate upper bound on λmin(P ). The interval DC lies on the
line y = 1

2x − 15
8 , hence we must show that

λmin(P ) � 1
2λ(P )− 15

8 . (29)

Suppose that λmin(P ) = λ12(P ). Then we may rewrite (28) as

λ12(P ) � λ12(P ) + λ13(P ) + λ14(P )− 15
8 (30)

or

λ13(P ) + λ14(P ) � 15
8 . (31)

Because for any i < j, tr(trAiAj
P )2 � 1

4 , so λij (P ) � 15
16 and thus inequality (30) follows.

Finally, we show that

λ(P ) � 11
2 . (32)

Let ρ = trA1P . This is an 8 × 8 density matrix. Then inequality (31) is equivalent to the
following one:

4∑
j=2

tr(trAj
ρ)2 � 1. (33)

Let us first show that there are two one-dimensional projectors P,Q ∈ M8×8(C) such that
ρ = 1

2 (P + Q). Clearly, ρ = αP̃ + (1 − α)Q̃ for some P̃ , Q̃, α ∈ [0, 1] and there exists
U ∈ SU(8) such that ρ = Uρ0U

∗, where

ρ0 = diag (a, 1 − a, 0, . . . , 0).

Suppose that

ψ =
(√

a,
√

1 − a, 0, . . . , 0
)

∈ C
8

φ =
(√

a,−√
1 − a, 0, . . . , a

)
∈ C

8
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and

Pψ = |ψ〉〈ψ | Pφ = |φ〉〈φ|.
Then ρ0 = 1

2 Pψ + 1
2 Pφ . Hence

ρ = U( 1
2 Pψ + 1

2 Pφ)U
∗ = 1

2P + 1
2Q

where P = UPψU
∗ and Q = UPφU

∗. Therefore, inequality (32) is equivalent to

1
2

4∑
j=2

tr(trAj
P )2 + 1

2

4∑
j=2

tr(trAj
Q)2 +

4∑
j=2

tr[(trAj
P )(trAjQ)] � 2. (34)

To simplify notation we define

h(P,Q) =
4∑

j=2

tr[(trAj
P )(trAj

Q)]

and

k(P,Q) =
4∑

j=2,j<k

tr[(trAjAk
P )(trAjAk

Q)].

Clearly

h(P, P ) =
4∑

j=2

tr(trAj
P )2 =

∑
j=2,j<k

tr(trAjAk
P )2 = k(P, P ).

Suppose that

h(P,Q) � k(P,Q)− 1.

Then

1
2 (h(P, P ) + h(Q,Q)) + h(P,Q) � 1

2

[∑
j<k

tr(trAjAk
P )2 +

∑
j<k

tr(trAjAk
Q)2

+2
∑
j<k

tr(trAjAk
P )(trAjAk

Q)− 2

]

= 1
2

∑
j<k

tr(trAjAk
(P + Q))2 − 1

= 2
∑
j<k

tr

(
trAjAk

(
P + Q

2

))2

− 1 � 2

since

tr

(
trAjAk

(
P + Q

2

)2
)

� 1

2

for any (j, k), and so inequality (31) follows. Therefore, to complete the proof it suffices to
show the following lemma. �
Lemma. For any pair of one-dimensional projectors P,Q ∈ M8×8(C) we have that

h(P,Q) � k(P,Q)− 1.

Proof. Let

P =
(
p11 p12 . . . p18

. . . . . . . . . . . . . . . . . . . . .

p81 p82 . . . p88

)
Q =

(
q11 q12 . . . q18

. . . . . . . . . . . . . . . . . . . . .

q81 q82 . . . q88

)
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where pij = aiaj , qij = bibj and
∑8

i=1 |ai |2 = ∑8
i=1 |bi |2 = 1. Because

trA1P =



p11 + p55 p12 + p56 p13 + p57 p14 + p58

p21 + p65 p22 + p66 p23 + p67 p24 + p68

p31 + p75 p32 + p76 p33 + p77 p34 + p78

p41 + p85 p42 + p86 p43 + p87 p44 + p88




trA2P =



p11 + p33 p12 + p34 p15 + p37 p16 + p38

p21 + p43 p22 + p44 p25 + p47 p26 + p48

p51 + p73 p52 + p74 p55 + p77 p56 + p78

p61 + p83 p62 + p84 p65 + p87 p66 + p88




trA3P =



p11 + p22 p13 + p24 p15 + p26 p17 + p28

p31 + p42 p33 + p44 p35 + p46 p37 + p48

p51 + p62 p53 + p64 p55 + p66 p57 + p68

p71 + p82 p73 + p84 p75 + p86 p77 + p88




and

trA1A2P =
(
p11 + p33 + p55 + p77 p12 + p34 + p56 + p78

p21 + p43 + p65 + p87 p22 + p44 + p66 + p88

)

trA1A3P =
(
p11 + p22 + p55 + p66 p13 + p24 + p57 + p68

p31 + p42 + p75 + p86 p33 + p44 + p77 + p88

)

trA2A3P =
(
p11 + p22 + p33 + p44 p15 + p26 + p37 + p48

p51 + p62 + p73 + p84 p55 + p66 + p77 + p88

)
by direct calculation we obtain that

k(P,Q)− h(P,Q) = 1 − |〈�a, �b〉|2 − |〈�a, R�b〉|2 (35)

where �a = (a1, . . . , a8), �b = (b1, . . . , b8) and R is an antiunitary operator on C
8 defined as

follows:

R(a1, a2, a3, a4, a5, a6, a7, a8) = (a8,−a7,−a6, a5,−a4, a3, a2,−a1).

Because vectors �b and R�b are orthogonal and normalized,

0 � k(P,Q)− h(P,Q) � 1. (36)

�
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